
Journal o f  Statistical Physics, Vol. 5, No. 1/2, 1972 

Nonequilibrium Statistical Mechanics 
of Finite Classical Systems--I 
C. J. Myerscough 1 

Received June 22, 1971 

It is pointed out that the fine-grained probability density of statistical mechan- 
ics is of interest only through coarse-grained densities~integrals over nonzero 
volumes of phase space. This suggests the definition of a smoothed probability 
density: the unsmoothed density convoluted with a kernel having a small 
"spread" around zero velocity. If this kernel is of Gaussian form, the smoothed 
density satisfies a closed and exact equation for its evolution differing from 
the Liouville equation by the addition of one term. This equation is applied 
to the simple example of a noninteracting system. We need make no assump- 
tion about the size of the system in our discussion, though if the system is 
large enough, the assumption that it is infinite gives the same results. Reduced 
distribution functions are then discussed, and a treatment of the Landau 
damping of electron plasma oscillations is given that is free from the usual 
difficulties occasioned by the breakdown of the linearization. 

KEY WORDS: Coarse-grained probability density; smoothed probability 
density; avoidance of infinite system limit; weak-interaction master equation; 
diagram techniques; nonequilibrium statistical mechanics; kinetic theory. 

1. I N T R O D U C T I O N  

There have been two distinct phases in kinetic theory and  the statistical 
development  of mechanics since the pioneering work of Bol tzmann  (1) 

nearly a century ago. Unt i l  abou t  thirty years ago, this was the only work 
that could be used in practical applications,  (z~ but  much  related theoretical 
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work was being done (a) with the aim of underpinning the foundations of 
the subject. Since then, there has been a vast expansion in both of these fields, 
but the gap between them has widened. In kinetic theory, many master 
equations for the evolution of classical systems have been derived, and many 
new phenomena, particularly in the field of plasma physics, explained. 14-s~ 
The fundamental problems have, however, been considered more and more 
by pure mathematicians, who have developed the subject of ergodic theory. ~9) 

One cause of this gap is that while most results of ergodic theory have 
concerned systems of finite size (though possibly very large), all recent 
derivations of master equations have asserted the necessity of making the 
number of particles in the system actually infinite. Often this has been 
deemed necessary in order to make the Poincar6 recurrence time for the 
system infinite. However, details of the mathematical difficulties inherent in 
proceeding from a phase space of finite size and dimensionality to one of 
infinffe size and dimensionality are usually left rather vague. 

In this paper and its successor, we aim to show how various well-known 
problems of kinetic theory and statistical mechanics may be tackled without 
invoking this limit. We first set up the basic equations and boundary con- 
ditions with which we shall be concerned in a study of finite systems; we then 
briefly discuss the meaning of the phrase "a system tends to equilibrium," 
stressing that the basic concept involved is that of the "coarse-grained 
probability density" first introduced by Gibbs. We set out what we should 
aim to prove, and show that this is not contradicted by the existence of a 
finite Poincar6 recurrence time for the system. 

Next appears the idea of a smoothed probability density. This is much 
easier to handle than the coarse-grained density, for it satisfies a closed and 
exact equation for its evolution similar to the Liouville equation for the 
unsmoothed density. This equation can be used instead of the Liouville 
equation to discuss almost any problem of classical statistical mechanics. 
We begin with the simple one of a noninteracting system. The results are very 
similar to those derived using the infinite limit, provided the time the system 
takes to reach equilibrium is much less than the time a particular particle 
of the system takes to cross its containing vessel. 

We then discuss smoothed reduced probability distribution functions, 
setting up an analog of the BBGKY hierarchy. Finally, in this paper, we 
show how Landau's famous solution (4) of the Vlasov equation for electron 
plasma oscillations may be set out in terms of smoothed densities. The 
long-term behavior of the electric field is the usual exponential decay; 
however, we find that the linearization of Vlasov's equation used to derive 
this need not break down eventually if the initial perturbation is small enough. 

In the next paper, we shall apply our ideas to the work of the Brussels 
school, studying particularly the weak-interaction problem, and obtaining 
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an analog of  the Brout-Prigogine master equation, again avoiding the use of 
the infinite limit. We discuss the conditions of validity of this equation, and 
suggest directions for future work. Earlier versions of some of the results of  
these papers were given at the 1969 Cornell Symposium on Kinetic Equations, 
and appear in the proceedingsJ ~ 

2. F I N E - G R A I N E D  A N D  C O A R S E - G R A I N E D  P R O B A B I L I T Y  
D E N S I T I E S  

We consider a classical dynamical system of  N identical particles of  
unit mass. Each particle has s translational degrees of freedom. Let 

xr = (xrl ,..., xr3, v~ = (vrl ..... v~3 (1) 

be respectively the position and the velocity of the rth particle at time t. 
The set of pairs (x~, v~) for any r is the 2s-dimensional/,-space of the system. 

The configuration of the system at time t is specified by the two Ns- 
vectors 

X = { '~i  . . . .  , XN} , V = {v~ ..... vN} (2) 

i.e., by a point in the N-dimensional space F of pairs (X, V) (the f-space). 
Throughout  this work, we shall use a capital letter for a Ns-vector, with the 
corresponding small letter for its Ns-vector components, as in (2). We 
write 

A " B = al " bl -}- "'" + au �9 b~v (3) 

a ~ / a x  -- {a~/ax, ,..., a~/axN} (4) 

In statistical mechanics, we are never given the exact positions and velocities 
of particles of the system. Instead, we assume that there exists a real and 
positive-valued function p(X, V, t) such that the probability of finding the 
system (or rather, the point representing the configuration of  the system) in 
a given subset 12 o f / "  at time t is 

P ( &  t) = f~  o(x, v,  t) dusXdN~V (5) 

[Hence P(_P, t) = 1.] 
The only physical significance of p is through expressions of the form (5). 

No experiment can measure p itself; all experiments we can do give estimates 
of  some P(12, t). Suppuse, for example, that we have a number G of  indepen- 
dent copies of the system (a Gibbs ensemble). Then, the number n(12, t) of 
these that are in 12 at time t is a random variable whose mean is GP(12, t). 
This if n is measured, n/G gives an estimate of P. The proportional error in 
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this estimate will decrease with n; indeed, it is well known from probability 
theory to behave like n -1/2 when n is large. For  a given accuracy of measure- 
ment of P(f2, t), we can stipulate a lower bound to GP. Assuming that p is 
continuous, for small enough sets ~,  P(Y2, t) is proportional to/~(s the 
2Ns-dimensional measure of f2. For a given accuracy of measurement of P, 
there is a lower bound to G/x(f2). Since there is always an upper limit to the 
size of ensemble that we can use in out experiments, to fix any standard of 
accuracy in measurement at once establishes a nonzero lower bound to the 
measure of sets Y2 such that P(s t) is physically meaningful. 

We therefore consider the behavior of the "coarse-grained probability 
density" 

p(s t) = [1//x(D)] P(D, t) (6) 

for p(~)  # 0, rather than that of the "(fine-grained) probability density" p 
itself. 

If  the system moves according to Hamilton's equations 

dX/dt  = aJt~/bV, aV/at = - - a R / a X  (7) 

where g4~(X, V) = H(X) q- V=/2 is the total energy, and p varies with time 
according to Liouville's equation 

0 = ~ p  =-- (ap/at) + v �9 (ap/aX) + F(X) �9 (ap/av) (8) 

where F(X) = --#H/aX gives the force on each particle. 

3. B O U N D A R Y  C O N D I T I O N S  

The system is confined within a cubic vessel with perfectly reflecting 
sides of length l; F consists of all points (X, V) satisfying 

0 <x i~  < l, i =  1 .... ,N;  j =  1 ,2 ,3  ..... s (9) 

and/x consists of the set of such points for any given i. 
When the motion of the system causes one of its x coordinates to reach 

an extreme value, the corresponding velocity is at once reversed in sign, and 
the motion continues. This corresponds to the following condition on p at 
the edges of f ' :  

p(X, V, t) = p(X, V', t) (10) 

where, for all r, j such that x~j = 0 or l, 

v;j = --v~- (11) 
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To incorporate such explicit boundary conditions we introduce periodic 
boundary conditions. Instead of representing the system by one point (X, V), 
represent it by the infinite set of points (X", V"), where 

x}'j = 2 n J  • x i j  

it 
Via ~ ~ Y i j  

(12) 

for any set of integers n~j (i ~-- 1,..., N; j ----- 1 .... , s). (Some of these points 
may coincide.) Extend the definition of W(X, V) to all space by writing 

~(x" ,  v") [=~(x" ,  v)] = ~ ( x ,  v) (13) 

for all such (X", V"). ~ will be continuous at the boundary of _P, and at the 
boundaries of all the other "cells" obtained from/~ by changing any of the 
x~j by any multiple of I. ~ is even and has period 2l in any of the x~-. 

Let all the points (X", V") defined by (12) move according to (7) with 
the ~ of (13), and subject to no other constraints. The motion of a point 
moving within/" and kept inside/~ by perfectly reflecting walls is exactly the 
same as the motion of the point (X", V") which lies inside _P. As soon as this 
point reaches the edge of f', it leaves/',  but simultaneously and at the same 
position in space, another point enters _P with all velocity components the 
same except for those normal to the boundary, which are reversed in sign. 
The first point will suffer no discontinuities in its position or velocity as it 
leaves/1. 

It is clear that the probability of finding one of the points representing the 
system inside a volume 12 of (X, V) space wholly contained within one cell 
is given by (5) if we stipulate that for all (X, V) in the interior of T' and all 
(X", V") defined by (12), 

p(X",  V",  t) = p(X, V, t) (14) 

This p is hence a probability density; it is even and periodic in X, and must 
satisfy (8) at all interior points of cells. The final remark of the last paragraph 
shows that p must be continuous across cell boundaries, so we may define 
it on these boundaries also. Furthermore, if (X, V) is a boundary point, 
(X, V') given by (11) is an (X", V") given by (12). So (14) implies (10). Within 
F, p(X,V, t) satisfies the Liouville equation (7) and the boundary 
condition (10). 

Thus we need consider only certain periodic solutions of (7), with periodic 
Hamiltonian given by (13). We call this imposing periodic (boundary) 
conditions. This idea has been introduced by many authors. (n,z~) 

It is physically clear from our discussion, and easy to prove from (7), 
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that if f (X, V) is any function also satisfying the periodic conditions (14), 
then 

f r f (X,  V) p(X, V, t) dNsX dNsV (15) 

is constant, 

4. F O U R I E R  SERIES R E P R E S E N T A T I O N  

We impose periodic conditions by expanding p and H in Fourier series 
of period 2l in each component of X 

p(X, V, t) = ~ p~(V, t) exp iK" X (16) 
K 

H(X) = ~ HE exp iK" X (17) 
K 

where K ranges over the Ns-dimensional lattice of vectors given by 
K~j = (~r/l) nr Because p(X, V, t) and H(X) are even in all components of X, 
all the px~ and H K are real, and 

pK,(V, t) = pK(V, t); H~ = HE, (18) 

where K' is obtained by changing the sign of any component of K. 
Equation (8) gives 

0 = [Opa(V, t)/Ot] + iK" VpK + ~ F_K,[SpK+x,(V, t)/aV] (19) 
K' 

where F K : --iKH~. We assume that the form of H corresponds to two- 
body central interactions, with no external field. For X ~ / ' ,  

H(X) = X Y~ v(I x~ - xo I) (20) 
~o=2 q=l 

and so, since H is even, 

H K = (1/l N'~) f dx11 "'" f dXNs H(X) c o s ( k l l X l l  ) " "  C o s ( k N s x N s  ) 
o 0 

(21) 

N ~ 1  

= 2 2 8k1"'" Vk,,k. "'" 8kN (22) 
~=2 q=l 
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where 

Vklk~ ~--- (1 / /2s )  t dXll  "'" } dx2s V(I X 1 - -  X2 !) coS(k l lX l l )  "" cos(k2sx~s ) 
,J 0 "J 0 

3 k =  1, k ~ O  

= 0 ,  k = / : 0  

In general, this is as much as we can say about Vkl,k, �9 For  any X,  

(23) 

(24) 

H ( X ) - -  Z Z V(x~, xq) (25) 
p=2 q=l 

where our method (13) of extending the definition outside means that 
V(x~, xq)is no longer a function of ] x~ -- x~ ], or even x~ -- xa, only. Thus 
while the former would give us the usual result for central interactions 

Vkl,k~ = VklSk~+k2 (26) 

we cannot expect (26) to be true here. 
There are, however, certain simplifying assumptions we can often make. 

Let A be the typical distance in space over which V(r) may vary appreciably. 
By integrating (23) by parts, it may be shown that if ka or k2 is much greater 
than zr/h = k0, Vkl.k ~ will be very small. Suppose now that s > 1, and that 
A ~.. l, i.e., the interaction potential varies considerably over a distance much 
smaller than the side of the vessel containing the system. There will be a 
large number, of the order (l/A) 2~, of pairs ka, k., such that kl and kz do not 
greatly exceed ko, and of these, all but a small proportion, of order Aft, 
have all components of k I , k2 of order k0 �9 In this sense, we can speak of k0 
as the typical magnitude of wave vectors k~, k2 such that Vkl,k, :/= 0. 

We may also show that Vkl,k ~ need be taken as nonzero only when either 
the sum or the difference of each pair of corresponding components of k l ,  k2 
is of order 7r/l, while each component will generally be of order 7r/)~. The 
number of such k~ and k 2 is of order (l/;t) ~. 

5. THE  T IME E V O L U T I O N  OF T H E  PROBABIL ITY  DENSITY 

Let p(X, V, t) satify (8) and (14), and p(X, V, 0) be given. Then, p(X, V, t) 
is determined for all time. 

Suppose that p(X, V, t) tended to a limit p(X, V, oo) as t ~ oo. This 
would be a time-independent solution of (8). It is a well-known result of 
Fermi's 2 that except in the trivial case of no interactions, any such solution 

2 See Ref. 1, Appendix C or Ref. 7, Chapter 14 for a proof. 
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depends on X and V through 3r V) only. The conservation law (15) then 
shows that p(X, V, co) would have to equal the phase average of the initial 
conditions, as usually defined. If  there are no interactions, p(X, V, co) would 
have to be the spatially homogeneous component p0(V, 0) of p (which, we 
note, is here invariant under the change in sign of any component of V). 

We prove at once from (8) that 

(didO fr [p(X, V, t) -- p(X, V, 00)] 2 = 0 (27) 

which implies that unless p were originally a time-independent solution of 
Liouville's equation (in which case it does not vary), it can never tend to one 
a s  t ~ co  o r  a s  t - +  - - o o .  

Indeed, the physical interpretation of Liouville's equation (8) is that p 
is constant at each representative point moving along a system trajectory. 
Therefore, unless p is originally constant along each such trajectory, i.e., 
an equilibrium solution of Liouville's equation, it cannot become constant in 
time. We expect that the motion of the system will be very complicated, and 
that representative points that were originally far separated will sometimes 
approach each other closely. Thus it seems likely that the behavior of p as a 
function of X and V will become more and more wildly oscillatory as 
t -+ ~: co; later, we shall see from examples that this is in fact so. 

However, we have already remarked at the end of Section 1 that we are 
not directly interested in p. All that we can measure in any given series of 
experiments on a given ensemble with a given standard of accuracy is the 
value of the coarse-grained density ~(s t), as defined by (6), at various times t. 
Here, f2 is a subset o f /1  of measure greater than a certain lower bound fixed 
by the ensemble size and the required accuracy. 

We are usually particularly interested in the evolution of functions of 
state, linear functions of p 

~(t )  = f /~(x, v) p(x, v,  t) dN*XdU~V 
F 

(28) 

where fl(X, V) is some function of position and velocity; for example, 
fi(X, V) = V~/2 gives the average kinetic energy of the ensemble (i.e., the 
kinetic energy of a particular system will be a random variable whose mean 
is this expression). We measure o~ by dividing /" up into a number M of 
cells, such that/3 has an approximately constant value fl~ in cell i, counting 
the number n~ of systems in cell i, and summing 

M 

o~-(t) = (l/G) ~, nifli (29) 
i=1 
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G = 52 ni being, as before, the total number of systems in the ensemble. 
That is, we try to measure 

M 
t,(s~,) p (~ ,  t) (30) 

i=l 

which may be written as an integral 

where 

f 2 fi(X, V) p(X, V, t) dNsX dNsV (31) 

p(X, V, t) = p(D~, t) [(X, V) ~ s (32) 

We would like to prove that for any s of a physically sensible form, 
p(~, t) tends to the expression p(D, 0o) obtained by coarse-graining 
p(X, V, oo) as defined above either as t --+ oo or as t ~ -- Go. I f  we could do 
this, we will have explained completely the fact that the observed values, 
given by (31), of expressions such as (28) tend to limits as t--+ =koo, the 
phenomenon known as "the approach to thermal equilibrium" or 
"irreversibility"; furthermore, we would have justified the use of the micro- 
canonical distribution in equilibrium statistical mechanics. 

6. THE  "TIME-REVERSAL" A N D  "RECURRENCE"  
" P A R A D O X E S "  

Before investigating further the behavior of p, we relate our ideas to 
two problems which have been much discussed over the last century. 

(a) We have stressed that any conclusions reached about the limit 
t -+ oo should also be valid when t ~ -- oo. Our coarse-graining technique 
gives no definite direction to time; we merely follow the behavior of certain 
functionals of p as it evolves according to the Liouville equation, which 
is time-reversible, i.e., invariant under the transformation (X, V, t) 
(X, -- V, --t).  In the next section, we shall derive an equation for the evolution 
of a type of smoothed density; this equation will be time-reversible. It might 
seem, therefore, that our hopes of the last section are thwarted byt the 
"time-reversal paradox." 

This, not quite as originally stated toward the end of the nineteenth 
century (for a bibliography, see Ref. 13) runs as follows: At time zero, we 
set up an ensemble corresponding to density p(X, V, 0); we allow a long time 
T to elapse. We now set up another ensemble, with density p(X, --V, T); 
after a further time T, this must have evolved back to p(X, V, 0). (The 
particles of a system retrace their paths exactly.) Thus the ensemble may just 
as well evolve away from equilibrium as toward it. 
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The fallacy in this argument is clearly exposed by our previous discussion. 
For such a procedure, we must stipulate an experimental technique for setting 
up the system at t = 0; then, p ~/5.  But after a long time T, p and t~ will 
differ considerably, and it will become impossible to set up an ensemble 
representing density p(X,- -V,  t) by the same technique without a likely 
error so large as to make the experiment meaningless. W h e n e v e r  we se t  up 

an e x p e r i m e n t  a fresh ,  we  m u s t  s tar t  wi th  p ~ ~. For a description of just such 
an "experiment" simulated on a computer, see Ref. 14. 

(b) We emphasize that we are considering a system of finite size, 
containing any number of particles. It was first shown by Poincar6 (9,1~) that 
almost any initial state of such a system is such that the system will, after 
a sufficiently long time, return to an arbitrarily small neighbourhood ( i n / ' )  
of it. In fact, given any subset s of _r', we can prove (Kac's recurrence 
theorem) that the average time taken for a point originally in s to return to D, 
the Poincar6 recurrence time, is finite. This time will be very large indeed, 
far longer than any physical time scale, if the system contains more than a 
few particles and f2 is small. Nevertheless, it is often said that the existence 
of Poincar5 recurrences precludes any useful kind of irreversible behavior; 
to obtain true irreversibility, we have to make the system infinitely large 
(in size, number of degrees of freedom, or both); for finite systems, 
irreversibility can occur only over times short compared to the Poincar6 
recurrence time. 

This statement arises from confusion between the ac tua l  behavior of 
one member of an ensemble and the m e a n  behavior of the ensemble as  a whole .  

The actual proportion of members of the ensemble in a given region f2 o f / "  
at time t is an integer-valued random variable whose mean is tS(D, t); this 
actual density will show random fluctuations which will occasionally be 
large enough to carry an individual member right back to its initial state. 
We shall see this happening in our example of Section 8. 

7. T H E  S M O O T H E D  P R O B A B I L I T Y  D E N S I T Y  

To proceed further, we must be more specific about the mehtod of 
constructing fi from p. It is reasonable to assume that if ~ is a small set 
containing (X, V), the existence of liml~l~| t~(D, t) does not depend on the 
exact shape of f~, provided that this is not too pathological. Hence we are 
justified in considering the more specialized functional of p, the "smoothed 
density" 

~(x, v ,  t) = f ~(Ax, Av) p(x - AX, V -- AV, t) dN~(AX) d'c~(AV) (33) 
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where a is a well-behaved positive function, with 

f a(AX, AV) d~(AX) dg~(AV) = 1 (34) 

We expect the "smoothing kernel" c~ to be very small except when ! AXI 
and [ AV I are small; thus the smoothing corresponds to taking a small cell C2 
round each point of/7. 

In fact, we specialize further to 

V, t) = f ~(AV) p(X, V -- AV, t) d~s(AV) (35) ~(X, 

where 

f c~(AV) d~(AV) = 1 (36) 

We shall find that (35) has all the properties that we want of (33) [or (6)], and 
it is much easier to handle. 

We want to be able to work entirely in terms of ft. In order to do this, 
we must be able to derive from Liouville's equation an equation in closed 
form for the evolution of fS. Let us investigate the possibility of doing this 
for some ~. We have 

= 

If, now, 

f dN~(dV) ~(AV) 

• {(~/~t) p(X, V -- dV, t) + (V -- Av) �9 (@/~X) + F -  (~p/~v)} 

~ ?  - f dN~(AV) ~(~V) AV.  (@/~X)(X, V -- AV, t) 

~ ~(Av)/~(AV) = - ( A v )  ~(Av) 

so that oL is Gaussian, of the normalized form 

cr = [1/(2~rcr2)2v~/2] exp[--(AV)2/2cy 2] (37) 

an integration by parts gives 

0 = ~e~ + ~2(~/~V) �9 (~/~X) (38) 

as required. Henceforth, we shall study the behavior of ~ using (38), and shall 
denote by a the function (37). The variance or "spread," cr 2, is an arbitrary 
real (positive) quantity. If  cr = 0, ~ = p and (38) reduces to (8). 

We note particularly that (38) is time-reversible. However, we should 
expect fundamental differences between the behavior of solutions of (6) and 
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those of 5vp = 0 as t -~ 4- 0% for the latter is a first-order partial differential 
equation corresponding to propagation along its characteristics, the system 
paths, while the former is a second-order equation of "pseudoparabolic" 
type--the second-order operator is hyperbolic rather than elliptic. 
Unfortunately, there are no general theorems on the behavior of solutions of 
such equations as t --~ 4- oe. The change from ~ ---- 0 to e ~ 0 introduces a 
term of higher degree; it is a "singular perturbation." 

We may prove that 

V, t) = f dU*(AV) cx(AV) 15(X, V -- i AV, t) (39) p(X, 

provided that p and 15 are analytic functions of the complex variables V, and 
that the integral converges. This restriction, which we shall make throughout 
our work, is physically reasonable since we can find an analytic function 
defined on the real line and taking values arbitrarily close to a given 
continuous function. 

The boundary conditions (10) or the periodic conditions (14) apply also 
to iS. In view of the discussion of Section 6(a), we usually restrict our initial 
conditions to those satisfying 

p(x, v, 0) ~ 15(x, v, 0) (4o) 

that is, we insist that our initial p and/5 vary little on scale cr 0 .% as V varies 
by a quantity of magnitude e). In other words, 

~/t~ ~ 1 where /x ,-~ (1/p)L So(X, V, 0)/SV ] (41) 

This is what we shall mean by saying that "a  is small." 

8. N O N I N T E R A C T I N G  SYSTEMS 

As a first simple illustration of our theory so far, consider a noninter- 
acting system. N noninteracting particles are subject to no external forces, 
save those confining them to a cubic box with perfectly reflecting walls of 
side I. o(X, V, t) will satisfy the Liouville equation with F = 0, 

(Sp/~t) + V �9 (0p/OX) = 0 02) 

In terms of Fourier components, as (16), 

[Spx(V , t)/St] + iK �9 VpK = 0 (43) 

/oK(V , t) = p~(V, 0) exp -- iK �9 Vt (44) 
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This is the most  general solution of  the Liouville equation. The p~(V, 0) are 
arbitrary functions of  V satisfying (18) and an indistinguishability condition, 
and also such that p(X, V, 0) is positive and 

l Ns fpo(V)  d N s V =  1 

Clearly px(V, t) does not  tend to any limit as t--~ oo or as 
t ~ - - o o ;  it rather  oscillates more  and more  rapidly as V varies, as we 
ment ioned earlier. On the other hand, for  any ~2, 

p ( ~ ,  t) = [1//x(s f dN*XdN"VZ pK(V, 0) exp iK"  (X - -  Vt) 
D K 

Provided the integration over g2 includes some integration over V, each term 
of  this expression will tend to zero as t ~ • oo except that  with K = 0. This 
is assured by the Riemann-Lebesgue lemma.(~) So, 

(, 

lira tS(.O, t) = [l//x(O)] j dUsXdU~Vpo(V, 0) (45) 

Thus, for  these systems, our  "coarse-graining" procedure  does give us the 
results we hoped for  in Section 5. We note particularly that  it is the integration 
over V components  that  is important ;  this supports our  idea of  specializing 
the definition of  t5 to (44) f rom (42). 

The quanti ty tS, as defined by (35) and (37), satisfies 

i.e., 

thus 

[O/5(X, V, t)/#t] + V �9 (atS/~X) 4- ~2(a/aX) �9 (~/5/0V) = 0 (46) 

[a•(V, t)/at] + iK �9 VIS~ + i ~ K  �9 ~/SK/aV = 0 

(~/Ot){[exp(-- V~/2~2)1 tSg} + icr2K ' (O/~V){[exp(-- V2/2~r2)] &} = 0 (47) 

so [exp(-- V2/2cr2)]/52 = g(V --  iKcr~t) for  some function g. In terms of  the 
initial conditions, 

tSK(V, t) = tS~:(V --  icr2Kt, 0) exp( - - iK  �9 Vt - -  �89 2) (48) 

I f  e = 0, (48) reduces to (44). We may in fact derive (48) f rom (44) by 
integration, using (35). 

As long as t5 corresponds through (35) to an analytic p, tS~(V, t) -+ 0 as 
I t l ~ oo for  K ~ 0; although/5~(V --  iKcr2t, 0) may increase with t, it will 
do so less rapidly than exp(--cr2K2t2/2) decreases. Provided the initial 
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IS(X, V, 0) satisfies (41), we may neglect the --iKc~2t compared to V in (48) 
for t such that fx is nonnegligible. Then, 

t~K(V, t) = fix(V, 0) exp(--iK �9 Vt -- �89 2) (49) 

and will become negligibly small once [ t I >~ (~K)-L This is the characteristic 
decay time of a single Fourier component of f. All non-spatially homogeneous 
components must disappear after a time of order liar. 

Usually, however, the time over which an initially non-spatially 
homogeneous ~(X, V, 0) decays to its spatial average will be much shorter 
than this. We shall often assume that f(X, V, 0) varies substantially in space 
over a distance ~ much smaller than I. In this case, an analysis very similar 
to that of Section 4 shows that the vast majority [all but a proportion 
O()tt/l)] of the nonnegligible fix(V, 0) have K ~ ~71. All these will decay in a 
time of order Al/a, and f(X, V, t) will be very near its limit after this time. 

Furthermore, any expression containing f that involves an integration 
over X, that is, a summation over K, will reach its limiting value more quickly 
still. Consider, for example, 

f d ~ X f ( X )  f(X, V, t) = ~ tSx(V, 0) exp(--iK �9 Vt -- �89 2) (50) 
K 

The expression 

~f -x fx (V,  0) exp - - iK"  Vt (51) 
K 

that is, the corresponding expression with e = 0, never tends to zero; in fact, 
it may be periodic in t. However, if it is periodic, the period is of order l/v o , 
where v0 is a typical value of a particle velocity component (generally v0 ~ /x ,  
but we shall keep them separate for the time being). The mutual interference of 
terms with different values of K �9 V in (51) is likely to make the behavior of 
the whole sum roughly as shown in Fig. 1. 

] \, 

\ 

I 
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i 

f 
/ 

I 

V o  

Fig. 1. Periodic fluctuations of expression (51). 
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After a time of order Az/Vo has elapsed, the sum will have been reduced 
in magnitude to a tiny fraction of its initial value, and will execute fairly 
random oscillations about zero until time l/vo, when the exponentials may 
once again be in phase. The average value of  the sum during this period is 
seen, by considering the mean of its square, to be about C-1/~ of  its initial 
value, where C is the total number of terms in the sum. C will be some power 
of l/Az, depending on the complexity of the initial conditions. I f  we now 
assume that 

t/v 0 >~ ,~,/a (52) 

the extra exponential in (50) will have knocked out all the terms of the sum 
well before any periodicity can occur. Thus we seem to be justified in assuming 
functionals such as (50) to decay to zero in a time of order A1/Vo. 

We thus have four time scales in our problem; in terms of increasing 
order of magnitude, these are as follows: 

(a) AJvo: Over this time, functions of  state reach their limiting values. 
(b) A1/a: Over this time, individual Fourier components offi reach their 

limiting values. 
(c) l/vo: A particle takes this time to cross the containing vessel. 
(d) l/a: Any bulk inhomogenieties, of  spatial extent ~-~l, take this time 

to be erased. 

We have taken the side of  the vessel containing the system to be so large 
that (1) the length scale of the inhomogenieties is much smaller than l; (2), the 
decay time of the inhomogenieties is much smaller than l/vo. 

In the next section, we shall show that the results we have obtained 
using these assumptions are very similar to those obtained by allowing I to 
become actually infinite. 

We stress, however, that neither of these assumptions is necessary to 
get/5 tending to a limit; it must do this in a time of  order l/cr, whatever the 
size of the vessel and the initial conditions. 

9. T H E  I N F I N I T E  SYSTEM CASE 

As we have seen, if a ~ 0, expressions for functions of state such as (50) 
may be periodic. In fact, of  course, 

p(X, V, t) -- ~ px(V, 0) exp iK" (X --  Vt) = p(X -- Vt, V, 0) (53) 
x 

which is periodic provided the components of  V are mutually commensurable; 
this is just a consequence of  our periodic conditions. To make this period 

822/5/I/2-4 
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tend to infinity, we must make l tend to infinity; the Fourier spectra of/5, H, 
etc. become continuous rather than discrete, 

p(X, V, t) = f dN~K p+(K, V, t) exp iK .  X (54) 

etc.; p+ is the Fourier transform of p. The behavior of an individual p+(K) 
is exactly the same as in the discrete case, but any wave packet formed by 
integration over a continuous range of K, 

fok dNsK p+(K, V, t) (55) 

will tend to a limit, similarly to the integral over V (45). In particular, since 
the Fourier transform of an analytic functionf(X) is 

f+(K) -= f0 8(K) + f + ' ( K )  (56) 

where f~'(K) is analytic, f0 the spatial average off (X) ,  and 8(K) the Dirac 
3 function, we shall have that 

f dN~Xf(X) p(X, V, t) = f dN~Kf+(--K) p+(K, V, 0) exp - - i K .  Vt (57) 

tends to a limiting value foP0(V, 0) in a time of order ;~t/Vo (using, once again, 
the Riemann-Lebesgue lemma). This is the same result as that of the last 
section, proved rather more rigorously. Provided we retain the condition (52) 
as we let l -+ oo and e --~ 0 (as we have done in this section by letting l ~ oo 
and then considering p), our discussion leading to (52) becomes steadily more 
exact. Three of our four time scales become infinite, but the smallest remains 
finite. 

We notice also that (53) is trivially still true for an infinite system; if the 
disturbances to p are initially localized in space, p(X, V, t) will eventually 
reach local spatial homogeniety for any given X. The disturbances are 
"rejected to infinity." 

It is the method of this section--to make the size of the system actually 
infinite and hence to smooth p over a continuous Fourier spectrum--that 
has been the basis of most work in nonequilibrium statistical mechanics 
over the last fifteen years, particularly that of the Brussels school. ~7,s,m It is 
essential to make the size of the system actually infinite; if it is finite, however 
large, the spatial Fourier spectrum of p will be discrete, and px(V, t) may be 
periodic. 

In order to make the system size infinite while keeping the average 
density of particles greater than zero, as is often desirable, the number N 
of particles in the system must be allowed to become infinite. Ordinary 
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theories of integration are then inadequate to give meaning to expressions 
of the form (55) or (57), and, indeed to the definition of p. Rigorous work on 
this subject becomes very difficult. 

By building smoothing into our definition of/5, we hope to avoid having 
to make l become infinite rather than large and finite. We have seen how in the 
case of an interactionless system our hopes are fulfilled. 

10. R E D U C E D  P R O B A B I L I T Y  D E N S I T Y  F U N C T I O N S  

We are normally interested only in reduced probability densities 
specifying the likely positions and velocities of one or two particles, though 
it must be emphasized that there is no conceptual reason for this restriction, 
only a practical one. In theory, we can set up apparatus for measuring/5(~2, t) 
defined by (6) for a quite arbitrary open subset ~ o f / '  having nonzero 
measure. I f  we take a large enough ensemble of systems, we can make this 
measurement with any specified accuracy. What we cannot do is measure 
p(X, V, t) itself. In practice, however, it is not worth building the complicated 
(but finite) apparatus or setting up the large (but finite) ensembles required 
for attempts to measure higher distribution fuctions. 

The smoothed q-particle probability density function fq may be defined 
either from the unsmoothed density f ,  

L(x~ ..... x~; v~ ..... v~; t) 

f ds(Avx) ... f d~(dvq) • (2rra2) -q~/2 exp[-- 2e-~(Avz ~ -]- -.. -k Avq2)] 

X f q ( x  I . . . . .  Xq; vz -- Av~ ,..., vq --  dvq; t) (58) 

or by replacing p by /5 in the usual definition o f f .  Integrating (38) over 
xq+~ ,..., VN, and substituting (20), we obtain, for 1 < q < N -- 1, 

--~t --~xj - ~ T~ Ov-~ ~x~" ~vj 
J=l  i = l  = j = l  

~ ( d%+ld%+l ~ V(x;, xo+l) .  ~fq+l (59) ~ (N -- q) ~ 

just the BBGKY hierarchy with one extra term. 
Before going on, we note one important physical point. I f  we assume that 

we can describe the evolution of the average values of quantities we want to 
measure entirely in terms off~ or f~, we can discard entirely the idea of  an 
ensemble of systems and say that for N large, an accurate measurement off1 
can be obtained by measuring the number of particles whose position and 
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velocity coordinates lie near xz and vz. This is the viewpoint generally 
adopted in kinetic theory. But we stress once again that our discussion of  
Sections 1 and 5 is valid with only minor rewording: The number of particles 
of the system in a region co of/X at a given time is a random variable whose 
mean is (from now on we shall assume that s = 3) 

N J" f,(x,, v , ,  t) dax~ dava (60) 

Its variance will also be proportional to N, and so as N increases, the 
observed density is likely to lie proportionately closer and closer to (60). 
Thus we may regard a single large system as an ensemble of weakly coupled 
one-particle systems. This is the "/*-space viewpoint," in contrast to the 
"P-space viewpoint" that we shall generally use. While the former requires 
the system to be large to obtain meaningful results, the latter does not. 

It may be shown ns) that for a large, weakly interacting system in 
equilibrium, f l  is a Gaussian function of velocity only. In general, the distri- 
bution of the energy of any small component of a large, weakly interacting 
system will be of Maxwellian form (the canonical ensemble of equilibrium 
statistical mechanics). It is only in the p-space viewpoint that the Maxwellian 
distribution has any special significance. 

11. T H E  V L A S O V  E Q U A T I O N .  E L E C T R O N  PLASMA 
O SCI LLAT! O N S 

If  we assume that the particles are uncorrelated, 

}2(X1 , X2 ; g I ,  V2 ; t )  = f l (x1  , V l ,  t ) f l (x  ~ , v 2 , t) (61) 

then (59) with q = l reduces to 

 fl+v 1 aL 
~xl 

= (N -- 1) ( dax2 dav~ aV(Xl' x2)" all(X1 ' V I '  t)fl(X 2 - .  ~xl  ~vl , v2 ,  t) (62) 

When cr = 0, this is Vlasov's equation. Its most important application 
is the study of electron plasma oscillations, where 

V(xl, xu) = e~/(4rrmeo [ xl -- x2 t) [(xl, v0, (x2, v~) ~/X] (63) 

[and the even periodic continuation for x, or x~ outside this range, as in (3.6); 
thus we still write V(xz, x2) and not V(I xl -- x21)]. 

I f  we write down the total electric field (excluding that due to the 
neutralizing effect of a positive ion background, which, to a first approxi- 
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f ( x ,  V, t) = L(V) -~ f(1)(X, V, t) 

E(x, t) =- Eo)(x, t) 

where f(1) and E(1) are assumed "small." Then, 

mation, plays no part in the motion since ions are so much heavier than 
electrons) E, 

(--e/m) E(x. t) = (N -- 1) ff a.x, d.v, i~v(x, x , ) /exlf (x , ,  ,,. t) (64) 
~t 

(changing Xl to x. x2 to x', and dropping the suffix 1 on f from now on). 
we have 

~f e ef e eF 0 -- el(x, v, t) + v-  + cr 2 �9 E ' 0 (65) 
~t --b-x ex ~v m Uvv --- 

Here, f satisfies the periodic conditions (14) with x for X, and E satisfies 

E(x', t) = ~E(x ,  t) (66) 

in such a way that it is an odd function of each component ofx .  If  we stipulate 
that f must be such that E(x, t) = 0 whenever x lies on a boundary of/~, E 
will be a continuous function of x at these boundaries. 

The pair (64)-(65) with cr = 0 has been the subject of much study. A 
solution of the linearised problem for small perturbations about equilibrium 
was first obtained by Landau. (4) The techniques used were justified by 
Backus. (19) Both these papers refer to an infinite plasma, as does the account 
of Ref. 20, whose notation we shall follow where possible. Boundary 
conditions like ours were introduced in Ref. 11. 

It is well known that the linearization used breaks down after a long 
enough time, however small the initial perturbation (for numerical examples, 
see Ref. 19). We shall now, however, apply the method of Landau to (64) and 
(65) with cr # 0, and show that by working with f instead o f f ,  we may 
recover the exponential decay of the electric field in a self-consistent way: 
the linearization does not break down. 

As usual, we write 

(67) 

(68) 

Eo)(x, t) = (N -- 1) f f  d3x ' dad 8,V(x, x') Jil)(x',-- v', t) (69) e 
m ~, ~ X  

0f(1) crz ~ ~f(1) e ~fo (70) 0 =  e f . ) + v .  + - -"  
~---~ ~x ~v bx m E(~) 

where in (70) we have neglected a product of  Eo) and ~fo)/6x; our 
approximation is that this term is small compared to the last of  (70), i.e., 

I ~.hl)/ev J ~ ! efo/~Vi (71) 
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Define Fourier components Ek and fk of E(1) and f(1) as before. From (70), 

eL eL 0 : - ~  + ik -  vfu -q-, icr2k " e Ek" (72) 
~v m ~v 

Equation (69) shows that Ek is parallel to k, while from (69) using the 
continuity of E(x, t), 

ik" Ek(t) = [--(N -- 1)e/e0] f d3v'fk(v ', t) (73) 

For each k, (72) and (73) are a coupled pair of equations for Ek andfk ; 
there is no coupling between different Fourier components in this approxi- 
mation. If  then we write Ek for the magnitude of Ek, and define 

F0(u ) : l 3 fro(v) 3(u -- [k" v/I k I]) d3v (74) 

(this depends on k unless f0 is isotropic in v), and 

Fk(U, t) : 13 f fk(v, t) 3(u -- [k" v/[ k ]]) d3v (75) 

where k ----- i k [, the two transverse velocity components may be eliminated, 
giving 

[~Fk(u, t)/et] + ikuFk + i(r2k(~Fk/OU) : (e/m) Ek ~Fo/~U (76) 

o~ 

Ek(t) : [i(N -- 1)e/k13%] f Fk(u, t) du (77) 
4'/ 

We desire the solution of (76) and (77) given the initial value o f f  k , 

J~k(U, 0)  = Gk(b/) (78)  

The solution of (76) with (78) is 

Fk(U, t) = Gk(U -- ikcr2t) exp(--ikut -- �89 

E (t - -   )Fe p(-iku  - - -  + (e/m) 
(79) 

To obtain this solution, we have assumed, as in the standard theory, that 
Fo(u) and Gk(U) are analytic functions at all finite points of the complex u 
plane; they are entire functions. Substituting into (77), 

Ek(t) : Qk(t) + [i(N -- 1) e2/%mkl 3] j od'c Ek(t -- 77") 

o c o  

[ du[exp(--iku-r -- �89 -- ik~'r) (80) X 
~d 
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where 

Ok(t) = [i(N - 1)e/eokl 3] f~o Gk(u -- ik~t)  exp(--ikut -- �89 2) du(81) 

Equation (80) is a convolution. Thus if Fk and Ek have Laplace transforms 

co 

Ek(p) = f Ek(t) e -~* dt (82) 
0 

etc., we have 

%kFk(p) P/i(N -- 1)e ~- f ~  du L~(k, u, p) 
co 

%- (elm) Ek(p) f du L2(k , u, p) (83) 

where 

That is, 

where 

Ll(k, u, p) = f dt Gk(u -- ikcr2t) exp[--(p %- iku)t -- �89 2] (84) 
0 

L2(k, u,p) = f dtffo'(U -- ik~r2t)exp[--(p %- iku)t -- �89 (85) 
0 

oc 

Ek(p) = [i(N - -  1)e/EokD(k, p) 13]f du Ll(k , u, p) 
- - o o  

D(k, p) = 1 -- [i(N -- 1) e2/%rnkl ~] f du L2(k, u, p) 

If  ~ = 0, we recover the standard expression for D. (~~ 

(86) 

(87) 

12. D I S C U S S I O N  O F  RESULTS.  L A N D A U  D A M P I N G  

By means of some rather heavy algebra, the following may be shown: 

(a) The exponential rate of growth of L~(t) as given by (76)-(78) is 
bounded above, so that the Lap/ace transform (82) must exist for and be an 
analytic function of p, for large enough p (the proof is very similar to that 
for the cr = 0 case(9)). 

(b) Ll(k, u,p) and L2(k, u,p) are analytic functions of u and p 
throughout the complex u and p planes. 

As a consequence of (b), we can write 
co o~ 

f L,.(k,u,p) d u :  f d te  -'~' 
- -oo  0 

oD 

• ( duffo'(U -- ikcrZt)exp(--ikut -- �89 2) 
,l - - o 0  
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reversing the order of integration over u,p. But from the definitions of 
Section 7, 

Fo' (U -- ikcr2t ) exp(-- ikut - �89 ~) 
oo 

(2fret2) -1/2 f du' Fo(u') exp{--iku't -- [(u -- u')2/2e2]} 

and so, integrating out the u, 

co co ~ao 

f L2(k, u, p)du = f du j dt e-(~+i~""Fo'(U ) 
- - c o  - - ~  0 

= f~  duFo'(U) 
_~ p + iku 

(88) 

This is all for R ep  > 0, when the integrals on the right converge; but as we 
well know, the expression (88) may be continued analytically to Re p < 0. 
In other words, the integrals over u occurring in (86) and (87) are the same 
whatever the value of ~ (provided the definition o f f  0 is adjusted). Thus we 
have the very sensible result that the expression derived for Ek(p) is the 
same whatever the value of ~r taken in the initial approximation. 

We may now discuss the behavior of Ek(t) as usual; (86) must give 
Ek(p) for large enough Re p and its analytic continuation elsewhere. This 
continuation is analytic at all points of the complex p plane except for poles at 
the zeros of D(k ,  p). The expression 

Edt) = (1/27ri)" f c ~ Ek(p) e ~ dp (89) 

certainly exists if Co is the contour --co < I m p  < 0% Rep  large enough. 
Further, as Imp--+ ~ ,  the numerator of Ek(p) tends to zero and the 
denominator to unity. So Ek(p) -+ 0. Thus it is permissible to move the ends 
of the inversion contour (at infinity) an arbitrary finite distance leftward. So, 

Ek(t) = ~ R~ exp[p~(k)t I + (1/27ri) f Ek(p) exp(pt) dp (90) 
s 6"  

where C is any contour running from Im P = - - ~  to I m p  = o% with Rep  
bounded; p~(k) are the zeros of Ok(p) that lie to the right of C; and R, are the 
residues of Ek(p) at these points. [There can be only a finite number of them, 
as Ek(p)---* 0 as I m p - - +  oo; we assume C does not go through a pole.] 
If  C lies to the left of Rep  = --c~, ~ > 0, the integral in (89) will decrease 
to zero faster than e-'I~l as t -+ oo (applying the usual damping theorems, 
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based on the Riemann-Lebesgue lemma). In most practical situations, 
we can expect that there is a zero Pl of Dk(p) with a very small negative real 
part, and in this case, after a very long positive time has elapsed, 

Ek(t) ~ R1 exp[pl(k) t] (91) 

This is the phenomenon of "Landau damping" of the electric field; Re Pl is 
called the "Landau damping decrement." 

Let us now consider the behavior Of Fk,  using (79). The first term tends 
to zero as ] t ] --~ Go, while the second has Laplace transform 

Ek(p) L2(k, u, p) (92) 

L~ is an entire function of p; it does not have a pole a t p  + iku = O, as does 
the corresponding expression for ~ = O. So the behavior of Fk is given by an 
expression similar to (91); it, together with any other quantity we can actually 
observe, will show Landau damping. In particular, aFk(u, t)/au will show 
Landau damping. 

In the case ~ = 0, we have 

Fk(u, t) = e-ik"~Gk(u) + Landau-damped terms (93) 

so that aFJau increases linearly with time; eventually, the fundamental 
linearizing approximation we have made, (71), must break down. When 
~r 4= 0, however, 

Fk(u, t) = [exp(--ikut --  �89 Gk(u --  ik~2t) 

-k Landau-damped terms (94) 

The magnitude of aFk/au will increase to a maximum at t ~,~ 1/ek, the phase 
mixing time for waves of length 2rr/k, as in Section 8. The value of this 
maximum will be of order Gk(u)/(r, and the linearization will not break down 
provided 

I aFo(U)/au] > (l/a)[ Gk(u)l (95) 

i.e., provided that the magnitude of the initial perturbation to F 0 is much less 
than the amount by which -P0 vaires on scale ~, 

t Gk(u)l < (e//QF0 (96) 

We note particularly that throughout this chapter we have avoided assuming 
that ~ is small, so (95) is not a strong restriction; provided that initially the 
perturbation is small compared to F 0 

[Gk ] ~ F 0  (97) 

we can find a e such that (95) is true. 
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We have thus shown how a self-consistent der iva t ion  o f  the theory  o f  
Landau  damping  of  electrostat ic  p l a sma  waves may  be ob ta ined  by work ing  
in terms o f f  ra ther  than in terms o f f i  
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